
http://www.pdl.cmu.edu/ http://www.pdsi-scidac.org/

GIGA+:
Scalable Directories for

Shared File Systems

Swapnil V. Patil and Garth Gibson
Carnegie Mellon University

www.google.com/events/scalability_seattle
www.youtube.com/watch?v=2N36SE2T48Q

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 2

Use cases for huge directories
•  Apps use FS as fast, lightweight database

–  Use case: All clients inserting millions of small files
in a single directory as fast as possible

–  Retain VFS API: create(), lookup(), readdir(), etc.
•  Creating many small files in a “burst”

–  E.g., per-process checkpoint on large clusters
–  E.g., science experimental capture

•  Creating many small files “steadily”
–  E.g., “log” files from long-running apps for later

post-processing (history, bio device runs,…)
•  Most interested in pushing the boundaries

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 3

GIGA+ directory index
•  POSIX-compliant file system directories

–  Extreme scalability through high parallelism
–  No range queries

•  GIGA+ distributed indexing technique
–  Unsynchronized, parallel growth without any

central coordinator
  Incremental, load-balanced growth

–  Tolerates stale mapping information at the clients
–  Self-describing bitmap to encode the entire index

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 4

Extendible Hashing [Fagin79]

0
1
2
3

RADIX increases, that
uses the growing table
(R = 2 bits)

F1, F3 ..

F2, …

Header-table Partitions

F4, F5

hash(“F5”) = 1001…011

F2, F4 ..

F4, …

•  Header-table doubles, if necessary
–  On splitting, the new partitions distribute their keys

•  Mechanism designed for single server impln.

Hash keys for load-balancing

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 5

Today: Dirs in IBM GPFS [Schmuck02]

1 2 3

Cluster nodes

File 2

File 1

•  Distributed directories use extendible hashing
[Fagin79], with locking and cache consistency

Dir 1

Dir 2

Directory
tree

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 6

Concurrent inserts in GPFS
•  Uses distributed locking and strong

consistency (will get better soon!)

1 2 n

Shared disk storage

Lock server

Node 2

Node 1

1
2

3

4

5

6

1 Node 1 has a write lock on a
partition of a directory

2
Node 2 needs to access the
same partition and contacts
the lock server.

3 Node 2 contacts Node 1 for
the write lock

4 Node 1 flushes its cache by
writing the partition to disk

5 Node 1 gives the write lock to
Node 2

6 Node 2 reads the partition
from the disk into its memory

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 7

Future bottleneck: map consistency
Dir /foo divided into partitions and striped across servers

P[1] P[2] P[3] P[i] P[N]

inode [/foo]
attributes

indirect block
double

indirect block

Partition-to-server
mapping stored in
the inode, cached
at the clients …
GPFS ensures
strong consistency

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 8

Reaching for more scaling
•  No need to lookup partition-to-server mapping

–  Use a mapping that is known a priori
–  Use the index size to find which partition to insert

•  Tolerate stale mapping information
–  Servers verify cached state and then forward (and

correct) client requests to the right server

•  LH* [Litwin96] enables these properties but …
–  Imposes a strictly serialized order of splitting
–  No parallelism: only splits one partition at a time

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 9

What’s new in GIGA+ directories?
•  Eliminate serialization

–  All servers grow the directory independently, in
parallel, without any co-ordinator

•  No synchronization & consistency bottlenecks
–  Servers only keep local “view”, no shared state

•  Weak consistency of mapping
–  Tolerates the use of stale mapping state at clients
–  Apps and users see strong consistency

 Once a file is created, lookups can see it

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 10

GIGA+ in action

Clients

Server

Y

G

R

mapping

P1 Y
P2 G
P3 R

P1 Y
P2 G
P3 R

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-1}

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 11

GIGA+ in action

Clients

Server mapping

Y

G

RP3 is full, it splits half into a
new partition, P4 on Y

insert (“F1”)

P1 Y
P2 G
P3 R

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-1}

P4
{.88 - 1}

P1 Y
P2 G
P3 R P3

{.75-.88}

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 12

GIGA+ in action

Clients

Server

Y

G

RR keeps “split history” of P[3]
{ P[4], Server Y, …}

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

mapping

P1 Y
P2 G
P3 R

P1 Y
P2 G
P3 R

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 13

GIGA+ in action

Clients

Server

Y

G

RClient gets a reply & updates
its map about P[4]

mapping

P1 Y
P2 G
P3 R

P1 Y
P2 G
P3 R
P4 Y

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 14

GIGA+ in action

Clients

Server

Y

G

R

Client ‘a’ has stale metadata
information

mapping

P1 Y
P2 G
P3 R

P1 Y
P2 G
P3 R
P4 Y

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 15

GIGA+ in action

Clients

Server

Y

G

RR no longer holds the entry,
knows that it split to server Y

find (“F1”)

mapping

P1 Y
P2 G
P3 R

P1 Y
P2 G
P3 R
P4 Y

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 16

GIGA+ in action

Clients

Server

Y

G

RUses “split history” to update
client’s cached metadata map

mapping

P1 Y
P2 G
P3 R
P4 Y

P1 Y
P2 G
P3 R
P4 Y

/foo

P1 {0-.5}

P2
{.5-.75}

P3
{.75-.88}

P4
{.88 - 1}

Cost of stale metadata -
needs some extra hops

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 17

Keeping track of partitions
•  Self-describing bitmap for the entire index

–  Indicates the “presence” or “absence” of a partition

•  Servers keep track of their partitions
–  Only keep local, current state of partitions
–  Bitmap used to provide lookup hints for the clients

•  Clients uses it to lookup a partition
–  Merges (OR operation) bitmaps from diff servers
–  Complete bitmap gives an approximate map of all

partitions on all servers

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 18

Growth of the directory index

•  Each server splits its partition when the
partition is full, without telling other servers

P[0-1]

p{0-.5} p{.5-1}

p{0-.25} p{.25-.5} p{.5-.75} p{.75-1}

p{0-1} Active partition
Old partition
Future partition

Radix 0

Radix 1

Radix 2

p{.5-.62} p{.63-.75}

p{.5-.75}

Radix 3

p{.5-1}

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 19

Concurrent growth of GIGA+ index
•  Fast, concurrent growth through minimal

synchronization
–  Servers decide independently when to split partitions

 Only keep track of their partitions
 No globally shared state on the servers

–  Servers don’t sync with the rest of the system

•  Servers keep a split history of its partitions
–  Edges pointing to the children nodes in the tree
–  Used to correct the clients with stale mappings

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 20

GIGA+ Design Summary
•  Completely decentralized and parallel growth

by allowing servers to split independently
–  Each server splits a partition when it wants,

without synchronizing with the rest of the system

•  Indexing technique that allows use stale
metadata mapping at clients
–  Servers update clients’ mapping information using

bitmaps

 Swapnil V. Patil © August 08
http://www.pdl.cmu.edu/ 21

Acknowledgements
•  Several people involved at some point …

–  S.Lang and R.Ross (Argonne National Lab)
 PVFS2 prototype co-conspirators

–  S.Hase, A.Jayaraman, V.Perneti, S.Sundaraman
  Initial FUSE prototype class project

–  M.Polte, G.Ganger, C.Faloutsos
 General discussions and feedback

